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Abstract
We investigate the effect of the long-range interaction (LRI) with an inverse-square function on

the thermal entanglement in anisotropic two-qutrit Heisenberg XYZ system with Dzyaloshinskii-
Moriya (DM) interaction in the presence of the external magnetic field, using Negativity and
Measurement-Induced Disturbance (MID) to quantify entanglement. The temperature and mag-
netic field dependence of the thermal entanglement in this system for this interaction are discussed.
Our results indicate that, when the LRI type interactions exist, there is a rich conduct dependent
between spins on the interaction strength, temperature, DM interaction and magnetic field.
In addition, we conclude that sudden death is displayed at the critical distance of the entangle-
ment. We find that for less than a critical distance there are entanglement plateaus dependent
upon the distance between spins. Furthermore it, we will make obvious comparison between the
measurement-induced disturbance (MID) and negativity for this model. We will discover that MID
is more robust than thermal entanglement against temperature T.

1 Introduction

The entanglement is a key asset which recognizes quantum information theory from the classical
one. It assumes a focal part in numerous potential applications such as quantum computation,
quantum information, quantum teleportation, quantum cryptography and dense coding [1]. In case
of entangled subsystems, the subsystem states prevent isolation of the perfect state vector. This is
the reason these subsystems are not any more autonomous, regardless of the possibility that they
are far isolated spatially. An estimation on one subsystem not just gives information about the other
subsystem, yet in addition, gives a probability of controlling it. Hence entanglement turns into the
essential agent in quantum cryptography, quantum computations and information processing and
teleportation, and so forth [2].
The describe two qubit interaction is least difficult by the Ising one between spin 1/2 particles as
Jσz1σ

z
2 . By the Heisenberg magnetic spin interaction models, the more broad interaction between

two qubits is given. Temporarily in dense matter systems [3], these models have been widely tested
amid quite a few years and hypothetically as precisely resolvable many bodies problems (Bethe,
Baxter, and others) [4].
By generating entangled qubits and building quantum gates [5], presently they end up plainly en-
couraging to acknowledge information processing and quantum computation in a more broad setting
than the magnetic chains.
Recently entanglement of two qubits [6] and its reliance on outer magnetic Fields, anisotropy, and
temperature have been considered in a few Heisenberg models: the Ising model [7]; the XX and XY
models [8], [9]; the XXX model [10]; the XXZ show [11]; and the XYZ model [12]. The Heisenberg
XXX model, in case of the ferromagnetic J < 0 the spin states are unentangled, while they are
entangled in case of antiferromagnetic J > 0 at adequately little temperature T < Tc = 2J

kln3 . The
critical point in the investigation of such models is the means by which to build entanglement in
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a circumstance when it as of now exists or doesn’t exist. The anisotropic antisymmetric exchange
interaction is presented in phenomenological contentions by Dzialoshinskii [13] and in microscopic
grounds by Moriya [14]. This interaction is expressed by ~D.[ ~S1 × ~S2]. A lot of authors introduced
detailed and comprehensive studies have shown the dependence of entanglement on various pa-
rameters, for example, interaction strength, temperature, single-ion anisotropy and magnetic field
[15]−[17]. The entanglement depends on the distance between spins, as well other physical param-
eters in case realistic systems. Such as short-range entanglement between spins or charge degrees
of freedom. It observed in quantum dots, nanotubes or molecules.
Clearly, Due to lattice phonons at finite temperature, the positions of spins could oscillate in case
realistic spin lattices. For this situation the integrals are exchange as a function of position and
thus depend on the distance between spins. This reliance of the exchange interaction J(R) on the
distance between spins may thus play an important role on the entanglement of the system. Such in-
teraction types are known as Calogero-Moser type interactions, obtained in Haldane-Shastry model
[18]. Understanding the detailed effect of Calogero-Moser type interactions on spin. Entanglement
can, therefore, contribute the realistic assessment of the potential of such spin systems for solid
state quantum computation and communication.
It found studies in the Heisenberg spin systems, shown that long-distance entanglement can be ob-
tained using this interaction type for different values of the interaction parameter α, J(R) ∼ R−α.
It’s known Qutrit systems attract much attention from researchers as they are promising candidates
for quantum information processing (QIP) [19].
The paper is organised as follows. In Section 2 we descibe an anisotropic two-qutrit Heisenberg
XYZ system, and give the eigenvalues, eigenvectors and density matrix of the system and discuss
the numerical results of modelling, giving the Negativity and MID of the system for this interactions
with differing model parameters. Finally, in section 3 we present our conclusions.

2 Model and solution for a two-qutrit

The Hamiltonian H for a two-qutrit anisotropic Heisenberg model with z-component interaction
parameter Dz is

H = J(1 + γ)σx1σ
x
2 + J(1− γ)σy1σ

y
2 + Jzσ

z
1σ

z
2 +Dz(σ

x
1σ

y
2 − σ

y
1σ

x
2 )

+B(σz1 + σz2) + J(R)(σx1σ
x
2 + σy1σ

y
2)

(1)

Where J and Jz are the real coupling parameter, γ is the anisotropic parameter. Dz is the z-
component DM interaction parameter, and σi(i = x, y, z) are Pauli matrices. B is the homogeneous
part of the magnetic field. The DM interaction and external magnetic fields are thought to be
along the z-direction. J(R) is the spin-spin coupling constant which will be defined in terms of the
distance between spins as inverse-square function J(R) = 1

R2 . All the parameters are dimensionless.
We consider first the long-range interaction G = J(R) = 1/R2 which is a version of the Haldane-
Shastry model with exchange interaction.
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The eigenvalues for this type of the long-range interaction are given by

E1 = −4Jz

E2,3 = ∓2α1

E2,3 = ∓2α2

E6,7 = Jz − 1

2

√
µ1 ∓

1

2

√
µ2

E8,9 = Jz +
1

2

√
µ3 ∓

1

2

√
µ4

|ψ1〉 =
1

n1
(A3|02〉+ |20〉)

|ψ2〉 =
1

n2
(b2|01〉+ b4|10〉+ b6|12〉+ |21〉)

|ψ3〉 =
1

n3
(c2|01〉+ c4|10〉+ c6|12〉+ |21〉)

|ψ4〉 =
1

n4
(d2|01〉+ d4|10〉+ d6|12〉+ |21〉)

|ψ5〉 =
1

n5
(e2|01〉+ e4|10〉+ e6|12〉+ |21〉)

(2)

where

A1 =
Dz2 −

(
J + 1

R2

)2
Dz2 +

(
J + 1

R2

)2 A2 =
Dz2 −

(
J + 1

R2

)2
Dz2 +

(
J + 1

R2

)2
A3 = A3 = A1− iA2 n1 =

√
A3A3∗ + 1

b4 = −−2α3 +B2 − α1B + 4γ2J2

2α1γJ
B1 = B

(
−α3 + 2Dz2 + 2(G+ J)2

)
B2 = α1α3 B3 = 2α1γJ(G+ J)

B4 = 2α1γDzJ

B5 = −B3(B1 + B2)

B32 + B42
B6 =

B4(B1 + B2)

B32 + B42

b2 = B5− iB6 B7 = −
(
α3− 2Dz2 − 2(G+ J)2

)
B8 = α1(−(G+ J)) B9 = α1Dz

B10 =
B7B8

B82 + B92
B11 =

B7B9

B82 + B92

b6 = B10− iB11 n2 =
√

b2b2∗ + b42 + b6b6∗ + 1

C5 = −B3(B2− B1)

B32 + B42
C6 =

B4(B2− B1)

B32 + B42

c2 = C5− iC6 c6 = −b6

n3 =
√

b42 + c2c2∗ + c6c6∗ + 1 d4 = −2α3 +B2 − α2B + 4γ2J2

2α2γJ

D1 = −
(
α3 + 2Dz2 + 2(G+ J)2

)
D2 = α2α3

D3 = 2α2γJ(G+ J) D4 = 2α2γDzJ
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D5 =
D3(D1 + D2)

D32 + D42
D6 =

D4(D1 + D2)

D32 + D42

d2 = D5 + iD6 D7 = α3 + 2Dz2 + 2(G+ J)2

D8 = α2(−(G+ J)) D9 = α2Dz

D10 =
D7D8

D82 + D92
D11 =

D7D9

D82 + D92

d6 = D10− iD11 n4 =
√

d2d2∗ + d42 + d6d6∗ + 1

e4 = −d4 E5 =
D3
(
D2− D1

B

)
D32 + D42

E6 =
D4
(
D2− D1

B

)
D32 + D42

e2 = E5 + iE6

E8 = α2(−(G+ J)) E9 = α2Dz

E10 =
D1E8

E82 + E92
E11 =

D1E9

E82 + E92

e6 = E10− iE11 n5 =
√

e2e2∗ + e42 + e6e6∗ + 1

α1,2 =

√√√√4

(
−
√

(B2 + 4γ2J2)
(

Dz2 + (J +G)2
)
∓Dz2 + γ2J2 + (J +G)2

)
+B2

α3 =
√

(B2 + 4γ2J2)
(
Dz2 + (G+ J)2

)
the dynamics of the density operator

ρ(T ) =
1

z

9∑
i=1

(exp(
−Ei
T

))|ψi〉〈ψi|, where z = Tr(ρ(T )) (3)

the density matrix for the two-qutrit system is obtained as follows after straight calculations:

ρ(T ) =
1

z



0 0 0 0 0 0 0 0 0
0 ρ22 0 ρ24 0 ρ26 0 ρ28 0
0 0 ρ33 0 0 0 ρ37 0 0
0 ρ42 0 ρ44 0 ρ46 0 ρ48 0
0 0 0 0 0 0 0 0 0
0 ρ62 0 ρ64 0 ρ66 0 ρ68 0
0 0 ρ73 0 0 0 ρ77 0 0
0 ρ82 0 ρ84 0 ρ86 0 ρ88 0
0 0 0 0 0 0 0 0 0


(4)

has matrix elements given as follows:

ρ22 = q22 + r22 + u22 + w22 ρ24 = q24 + r24 + u24 + w24

ρ26 = q26 + r26 + u26 + w26 ρ28 = q28 + r28 + u28 + w28

ρ33 = t33 ρ37 = t37

ρ42 = q42 + r42 + u42 + w42 ρ44 = q44 + r44 + u44 + w44

ρ46 = q46 + r46 + u46 + w46 ρ48 = q48 + r48 + u48 + w48

ρ62 = q62 + r62 + u62 + w62 ρ64 = q64 + r64 + u64 + w64
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Figure 1: Negativity as a function of T in the case J = 1/R2. (a) The solid and dashed curves are
evaluated for Dz = 0.5, 1, respectively at R = 1 for B = 0. (b)The dotted and dashed curves are
evaluated for Dz = 0.5, 1, respectively at R = 1 for B = 1. (c)The dashed, dotted and solid curves
are evaluated for B = 0, 0.5, 1, respectively at R = 0.01, Dz = 0.01. (γ = 1,J = 1,Jz = 1)

ρ66 = q66 + r66 + u66 + w66 ρ68 = q68 + r68 + u68 + w68

ρ73 = t73 ρ74 = t77

ρ82 = q82 + r82 + u82 + w82 ρ84 = q84 + r84 + u84 + w84

ρ86 = q86 + r86 + u86 + w86 ρ88 = q88 + r88 + u88 + w88

z = q22 + q44 + q66 + q88 + r22+

r44 + r66 + r88 + t33 + t77+

u22 + u44 + u66 + u88 + w22 + w44 + w66 + w88
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Figure 2: MID as a function of T in the case J = 1/R2. The solid and dashed curves are evaluated
for Dz = 0.1, 1, respectively at R = 1 for (a)B = 0 (b)B = 0.5. (γ = 1,J = 1,Jz = 1)
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Figure 3: Entropy as a function of T in the case J = 1/R2. The solid and dashed curves are
evaluated for Dz = 0.1, 1, respectively at R = 1 for (a)B = 0 (b)B = 0.5. (γ = 1,J = 1,Jz = 1)
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It is found that there are some systems could be entangled but the quantum correlations will be
her zero Negativity and non-zero values. This means that Negativity use cannot be predicted
as a measure of the entanglement of some quantum correlation. However, one can quantify the
surprised quantum correlation by using the measurement-induced disturbance (MID) as a measure
of quantum correlation [20, 21]. This measure expresses that if {λµ} refer to the eigenvalues of ρT2ab ,

then the negativity is given by, N =
∑4

µ=1 |λµ| − 1 where T2 refers to the partial transposition for
the second subsystem. By utilizing this definition for our system, the Negativity can be calculated
explicitly as, N = Max[0,−2Min[λi]]. Thus in this letter, we use negativity as our measure of
entanglement. the values of N range from zero to one: For a maximally-entangled when N = 1,
while for a unentangled state N = 0[22].
Measurement-induced disturbance (MID) was defined as the difference between the quantum mutual
information of a given quantum state and the classical state that is closest to the original quantum
state. The quantum correlation can be quantified by the measurementinduced disturbance Q(ρ) =
I(ρ)− I(

∏
(ρ)). The total correlation in a bipartite state ρ can be well quantified by the quantum

mutual information I(ρ) = S(ρa) + S(ρb)− S(ρ), and I(
∏

(ρ)), quantifies the classical correlations
in ρ since

∏
(ρ) is a classical state. Where

∏
(ρ) =



0 0 0 0 0 0 0 0 0
0 ρ22 0 0 0 0 0 0 0
0 0 ρ33 0 0 0 0 0 0
0 0 0 ρ44 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 ρ66 0 0 0
0 0 0 0 0 0 ρ77 0 0
0 0 0 0 0 0 0 ρ88 0
0 0 0 0 0 0 0 0 0


(5)

. Here S(ρ) = −
∑

i λi log2 λi denotes the von Neumann entropy. The von Neumann entropy,
named after John von Neumann, is the extension of classical Gibbs entropy concepts to the field of
quantum mechanics. It is one of the simplest entanglement measures. It vanishes for a pure state,
where all populations are 0 or 1 and it reaches its maximum for the completely mixed state.

In Figure 1(a) The negativity of the two-qutrit system in the case J = 1/R2 is plotted versus
T for different DM interaction values at the absence of a magnetic field. We see that Negativity
decrease with increase temperature. When increased DM interaction, we can see Negativity vanishes
in an asymptotic way. The evolution of Negativity in terms of B for different values of D are plotted
in Figure 1(b). It is obvious that, with the DM interaction Dz increasing, the range in which the
quantum correlation exists become wider. In Figure 1(c) we studied the effect of the magnetic
field on Negativity in the presence of both DM interaction and long-range interaction, we saw
that negativity dropping suddenly with increasing T at a critical Tc value and with increased the B
interaction, it is seen that decay faster before it reaches steady-going values. In Figure 2(a) The MID
of the two-qutrit system in this interaction is plotted versus T for different DM interaction values
at the non-attendance of a magnetic field. Reaches a plateau for small T at a fixed DM interaction
and fixed long-range interaction. With increase DM interaction, MID Stretching and it disappears
slowly. In the presence of a magnetic field with an increase, it found that MID expands more and
vanishes in an asymptotic way as shown in Figure 2(b). These are the entanglement plateaus,
i.e., the regions within the entanglement curve where the entanglement remains unchanged with
increasing distance between spins. In Figure 3(a) we plot Entropy as a function of T, We noticed
that when the magnetic field is missing, it suddenly dies and gives birth again. As the temperature
increases the entanglement increases slowly until it reaches steady-going values. In the presence of
the magnetic field the entanglement begin to value higher than the absence of the magnetic field
and decrease with the increase of the DM interaction where the phenomenon of death and living
at a lower temperature. With increasing temperature the entanglement increases slowly until it
reaches constant-going values in Figure 3(b).
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3 Conclusions

In this paper, the discussion centers on effect of the long-range interaction with an inverse-square on
the thermal Negativity and MID in a two-qutrit via a Heisenberg XYZ model with different DM in-
teraction under the external magnetic field. The numerical results show that, in the presence of the
long-range interaction, thermal entanglement between spins has a Strong behavior dependent upon
the magnetic field, DM interaction, temperature and interaction strength. We conclude that sud-
den death is displayed at the critical distance of the entanglement. Clearly the effect of long-range
interaction on the resource of entanglement provides a rich source of behaviour, with maximum
entanglement existing over significant parameter regimes with the associated entanglement sudden
death. Given the major interest in spin systems for solid state quantum computation and commu-
nication, hybrid spin XYZ models could provide significant input to these applications. By using
these parameters, entanglement can be controlled and changed. The long-range entanglement plays
an important role in teleportation, quantum computing etc. We believe that these interesting re-
sults can be valuable for researcher in this area of physics. From the above, we conclude that MID
may act as a more general tool than negativity for discussing quantum correlations quality of the
systems.
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